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Abstract

In many applications it is desirable to learn
from several kernels. “Multiple kernel learn-
ing” (MKL) allows the practitioner to opti-
mize over linear combinations of kernels. By
enforcing sparse coefficients, it also general-
izes feature selection to kernel selection. We
propose MKL for joint feature maps. This
provides a convenient and principled way for
MKL with multiclass problems. In addition,
we can exploit the joint feature map to learn
kernels on output spaces. We show the equiv-
alence of several different primal formulations
including different regularizers. We present
several optimization methods, and compare
a convex quadratically constrained quadratic
program (QCQP) and two semi-infinite linear
programs (SILPs) on toy data, showing that
the SILPs are faster than the QCQP. We then
demonstrate the utility of our method by ap-
plying the SILP to three real world datasets.

1. Introduction

In support vector machines (SVMs), a kernel func-
tion k implicitly maps examples x to a feature space
given by a feature map Φ via the identity k(xi,xj) =
〈Φ(xi),Φ(xj)〉 (e.g. [19]). It is often unclear what the
most suitable kernel for the task at hand is, and hence
the user may wish to combine several possible kernels.
One problem with simply adding kernels is that using
uniform weights is possibly not optimal. An extreme
example is the case that one kernel is not correlated
with the labels at all – then giving it positive weight
just adds noise [14]. Multiple kernel learning (MKL)
is a way of optimizing kernel weights while training
the SVM. In addition to leading to good classification
accuracies, MKL can also be useful for identifying rel-
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evant and meaningful features [2, 14, 20].

Since many real world applications more than two
classes are to be distinguished, there has been a lot of
work on decomposing multiclass problems into several
standard binary classification problems, or developing
genuine multiclass classifiers. The latter has so far
been restricted to single kernels. In this paper we de-
velop and investigate a multiclass extension of MKL.
We provide:

• An intuitive formulation of the multiclass MKL
task, with a new sparsity-promoting regularizer.

• A proof of equivalence with (the multiclass exten-
sion of) a previous MKL formulation.

• Several optimization approaches, with a compu-
tational comparison between three of them.

• Experimental results on several datasets demon-
strating the method’s utility.

2. Multiclass Multiple Kernel Learning

A common approach (e.g. [21]) to multiclass classifi-
cation is the use of joint feature maps Φ(x, y) on data
X and labels Y = {1, . . . ,m}, m > 2, together with a
linear output function

fw,b(x, y) = 〈w,Φ(x, y)〉 + by , (1)

parameterized with the hyperplane normal w and bi-
ases b. Here, b is short for the stacked variables
(b1, . . . , bm); we will use analoguous notation through-
out the paper. The predicted class y for a point x is
chosen to maximize the output,

x 7→ arg max
y∈Y

fw,b(x, y).

Hence for a suitable convex loss function ` training
can be implemented by the following convex multi-
class support vector machine (m-SVM) optimization
problem (OP):

min
w,b

1

2
‖w‖

2
+

n
∑

i=1

max
u6=yi

{` (fw,b(xi, yi) − fw,b(xi, u))} .

(2)
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Here n is the size of the training set, and u 6= yi

is short for u ∈ Y − {yi}. For the hinge loss,
`(t) := C max (0, 1 − t), the dual of this is a well-kown
quadratic program (QP) [21].

2.1. Multiple kernel learning (MKL) primal

We can generalize the above m-SVM further to operate
on p > 1 feature maps Φk(xi, yi) (for k = 1, . . . , p).
For each feature map there will be a separate weight
vector wk. Here we consider linear combinations of
the corresponding output functions:

fw,b,β(x, y) =

p
∑

k=1

βk 〈wk,Φk(x, y)〉 + by .

This corresponds to direct sums of feature spaces of the
form Φ̃(xi, yi) = (βkΦk(xi, yi))k=1,...,p. The mixing
coefficients β should reflect the utility of the respective
feature map for the classification task.

We aim at choosing w = (wk)k=1,...,p and β such that
fw,b,β(xi, yi) > fw,b,β(xi, u) for all u ∈ Y −{yi}. The
resulting OP, a generalization of (2), can be written as

min
β,w,b,ξ

1

2

p
∑

k=1

βk‖wk‖
2 +

n
∑

i=1

ξi

s.t. ∀i : ξi = max
u6=yi

` (fw,b,β(xi, yi) − fw,b,β(xi, u))

(3)
where we regularize the p output functions according
to their weights βk. Here and later the weights are
understood to be on standard simplex, i.e.

β ∈ ∆p :=

{

β

∣

∣

∣

∣

∣

p
∑

k=1

βk = 1,∀k : 0 ≤ βk

}

,

giving them the flavor of probabilities. This L1 regu-
larizer on β promotes sparsity, and hence we are trying
to select a subset of kernels.

While the OP (3) is interpretable and intuitive, it has
the disadvantage of in general not being convex due
to the products of βk and wk in the output function.
We thus apply a change of variables transformation
(cf. [4, Section 4.1.3]) with vk := βkwk. For a convex
loss, the resulting OP (below) is convex.

inf
β,v,b,ξ

1

2

p
∑

k=1

‖vk‖
2/βk +

n
∑

i=1

ξi

s.t. ∀i : ξi = max
u6=yi

`
(

〈v,Ψiu〉 + byi
− bu

)

(4)

where we define Ψkiu = Φk(xi, yi) − Φk(xi, u) and
Ψiu = (Ψkiu)k=1,...,p.

Beyond easing the interpretation of the weights, the
constraints on β are essential for technical reasons.

Their non-negativity guarantees that the combined
regularizer is convex. Further, without limiting the
norm of β, the regularizer on w would not be effective:
it could be driven to zero without changing fw,b,β by
dividing w by any positive scalar while multiplying β

with the same number.

2.2. MKL dual (general and hinge loss)

Key to the findings and algorithms in this paper is the
dual of the MKL optimization problem. Using a more
general proof technique than [20] (cf. appendix), we
can find the dual of (4) for any convex loss function `
without having to require differentiability.

Theorem 1 Let `∗ be the conjugate function of the
given convex loss function `, and δab be the indicator
function of a = b. The dual of the convex MKL prob-
lem (4) is equivalent to

inf
η,α̃,γ

γ +
∑

i

∑

u6=yi

ηiu`∗
(

−
α̃iu

ηiu

)

s.t. ∀k : γ >
1

2

∑

i,j

∑

u6=yi

∑

v 6=yj

α̃iuα̃jv 〈Ψkiu,Ψkjv〉 ,

∀i : ∀u 6= yi : 0 6 ηiu, and ∀i : 1 =
∑

u6=yi

ηiu,

∀v : 0 =
∑

i

(1 − δyiv)α̃iv −
∑

i

δyiv

∑

u6=yi

α̃iu

(5)
with γ ∈ R, α̃ ∈ R

n×(m−1), η ∈ R
n×(m−1). Observe

that the weight vector of the primal is obtained by

wk = wk(α̃) :=
∑

i

∑

u6=yi

α̃iuΨkiu . (6)

Now we plug the standard SVM loss function, the
hinge loss `(t) := C max (0, 1 − t), into (5). We ob-
tain:

min
α̃,γ

γ −
∑

i

∑

u6=yi

α̃iu

s.t. ∀k : γ >
1

2
‖wk(α̃)‖

2

∑

u6=yi

α̃iu ≤ C ∀u 6= yi : 0 ≤ α̃iu

∀v : 0 =
∑

i

(1 − δyiv)α̃iv −
∑

i

δyiv

∑

u6=yi

α̃iu

(7)
By introducing α ∈ R

n×m via the substitution

αiu =

{

−α̃iu if u 6= yi
∑

v 6=yi
α̃iv if u = yi

(8)
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we can equivalently rewrite equation (7) into

min
α,γ

γ −
∑

i

αiyi

s.t. ∀k : γ >
1

2
‖wk(α)‖

2

α ∈ S :=















α

∣

∣

∣

∣

∣

∣

∣

∣

∀i : 0 6 αiyi
6 C

∀i : ∀u 6= yi : αiu 6 0
∀i :

∑

u∈Y αiu = 0
∀u ∈ Y :

∑

i αiu = 0















(9)
with the correspondingly transformed, “unfolded”, ex-
pansion for the hyperplane normal,

wk =
∑

i

∑

y∈Y

αiuΦk(xi, u) . (10)

Both versions of the dual, the compact (7) and the
unfolded (9), are quadratically constrained quadratic
programs (QCQPs).

2.3. Relation to previous work

There have been several developments on optimizing a
linear combination of kernels while training a predic-
tor [1, 3, 6, 8, 12, 13, 15, 16, 20] ([18] considers general
parameterized kernel functions). To show the rela-
tionship of our approach to two previous approaches
[1, 20], we consider the unfolded dual.

For the case of a single kernel, p = 1, there is a single
quadratic constraint in (9) in addition to those of the
original m-SVM dual. We observe that at the opti-
mum this constraint will always be at equality, so that
we can substitute its right hand side back into the ob-
jective. This way, we exactly obtain the dual of the
m-SVM (4), as expected.

Our initial motivation was to propose an intuitive pri-
mal problem (3) that explicitly models the weights β

of the given kernels (or, alternatively, feature maps).
This is in contrast to the primal proposed in [1] in
which no such coefficients appear. To our surprise,
for the special case of m = 2 classes we find that our
dual (9) is identical to the dual derived in [1]. Further,
their method can be extended for multiple classes such
that it yields exactly the same dual as our OP (4).

Figure 1 provides an overview over several multiclass
MKL formulations and their relationships. The left
column shows our two primals (3) and (4). The right
column presents multiclass generalizations of the opti-
mization problems given in [1, 20], which originally are
binary. Within each column the primals are identical
up to a variable transformation, hence equivalent. The
two convex problems are equivalent as they share the
same dual (and strong duality holds, cf. [4]). By the

chain of equivalences, all shown OPs are equivalent,
despite their different regularizers.

2.4. Optimization

Recently unconstrained primal optimization is emerg-
ing as a promising machine learning technique. For
MKL this approach might be most convenient with
the OP from [1] (cf. Figure 1), as it does not include
β and the associated constraints. However, here we
follow the traditional MKL route along the dual.

One possibility is to solve either version of the dual
directly using an off-the-shelf solver. Equations (7)
and (9) are QCQPs. In general, a QCQP can be solved
much more efficiently than an SDP with interior point
methods due to the added structure of the problem [4].
In Section 3.1 we investigate this approach utilizing the
commercial optimization package CPLEX that offers
the barrier method for QCQPs.

In an alternative approach, following [20], we convert
both QCQPs into equivalent semi-infinite linear pro-
gram (SILP) formulations by a second (partial) dual-
ization with respect to γ while keeping all the other
constraints. For the unfolded QCQP (9) we obtain:

max
β∈∆p,θ

θ

s.t. ∀α ∈ S : θ 6
1

2

∑

k

βk ‖wk(α)‖
2
−
∑

i

αiyi
,

(11)
where S is defined as in Equation (9). (Analoguously
for the compact QCQP (7).)

Contrary to (9), solving the problem (11) yields the
values for β, but not for α. However, once we know
the optimal β, the problem reduces to the m-SVM
dual with a correspondingly mixed kernel, and α and b
can be determined by solving the m-SVM. As pointed
out in [20], this approach is beneficial when there al-
ready exists an efficient solver for the corresponding
QP. Furthermore, for fixed α, the optimization prob-
lem in β is a linear program (LP). However, the con-
straint on θ has to hold for every suitable α; hence the
name (referring to the infinitely many constraints).

This suggests the use of a column generation strategy
to solve (11): Solving the QP resulting from a fixed
β yields a particular α, which then gives rise to a
constraint on θ which is linear in β. We alternate gen-
erating new constraints in this way and solving the LP
with the constraints collected so far. This procedure
is known to converge [10, 20]. Hence our seemingly
complicated problem can be solved with off-the-shelf
solvers. In our implementation, we used CPLEX with
the dual simplex method for both QPs and LPs.
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�� ��

�� ��

min
β,w,b,ξ,s

1

2

p
X

k=1

βk‖wk‖
2 + C

n
X

i=1

ξi

s.t. ξi = max
u6=yi

siu, siu > 0

p
X

k=1

βk 〈wk, Ψkiu〉 + byi
− bu > 1 − siu

Intuitive MKL: Equation (3); Non-Convex
KS

substitute vk:=βkwk

��

�� ��

�� ��

min
β,w,b,ξ,s

1

2

 

p
X

k=1

βk‖wk‖

!2

+ C

n
X

i=1

ξi

s.t. ξi = max
u6=yi

siu, siu > 0

p
X

k=1

βk 〈wk, Ψkiu〉 + byi
− bu > 1 − siu

Generalized from Sonnenburg et. al. [20]; Non-Convex
KS

substitute vk:=βkwk

��
�� ��

�� ��

min
β,v,b,ξ,s

1

2

p
X

k=1

1

βk

‖vk‖
2 + C

n
X

i=1

ξi

s.t. ξi > siu, siu > 0
p
X

k=1

〈vk, Ψkiu〉 + byi
− bu > 1 − siu

Equation (4); Convex
ai

Theorem 1
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min
v,b,ξ,s

1

2

 

p
X

k=1

‖vk‖

!2

+ C

n
X

i=1

ξi

s.t. ξi = max
u6=yi

siu, siu > 0

p
X

k=1

〈vk, Ψkiu〉 + byi
− bu > 1 − siu

Generalized from Bach et. al. [1]; Convex
4<
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min
α

γ −
X

i

αiyi

s.t. ∀i : 0 6 αiyi
6 C, ∀i : ∀u 6= yi : αiu 6 0

∀i :
X

u∈Y

αiu = 0 ∀u :
X

i

αiu = 0

∀k : γ >
1

2

X

i,j,u,v

αiuαjv 〈Φk(xi, u), Φk(xj , v)〉

Common Lagrange Dual; Equation (9)

Figure 1: Equivalence of multiclass MKL optimization problems. Where present, the combination weights β are
understood to be on the standard simplex, i.e.

∑p
k=1 βk = 1, ∀k : 0 6 βk. (Left) Our proposed formulation.

(Right) Multiclass versions of previous formulations [1, 20]. (Row 1) Non-convex primals. (Row 2) Equivalent
convex primals via the variable substitution vk := βkwk. (Row 3) The common dual optimization problem.

Finally, MKL can be implemented by semi-definite
programing (SDP) [4, 13], which however is compu-
tationally more expensive.

2.5. Decomposable Kernels

One way to define a joint kernel k is to multiply a
kernel kX on X , i.e. kX : X × X → R, with a kernel
kY on Y, i.e. kY : Y × Y → R:

k ((x, y), (x′, y′)) = kX (x,x′) · kY(y, y′) . (12)

The feature space reflects this structure: it is the ten-
sor product of the features space on X with that on
Y. We will use (12) in all our experiments, mostly
with the matching kernel (or identity kernel) on Y,
i.e. kY(y, y′) = δyy′ . This kernel imposes the least
structure on the classes.

With a kernel that decomposes as in (12), the
quadratic terms in the OPs (8, 12, 13) simplify to
a Kronecker product of kernel matrices on X and Y.
Further, for our choice of the matching kernel (or other
diagonal kernels) on Y, we get

‖w‖
2

=
∑

i

∑

j

∑

u∈Y

∑

v∈Y

αiuαjv 〈Φ(xi, u),Φ(xj , v)〉

=
∑

i

∑

j

kX (xi,xj)
∑

u∈Y

αiuαjukY(u, u) .

Thus the joint kernel matrix in the unfolded OPs is
sparse (with n2m non-zero elements) and can be ar-
ranged into a block-diagonal form. This structure al-
lows to save memory and computation time in com-
parison to the compact OPs, where the matrices may
in general be full.
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3. Experimental Results

For each data set, ten random splits into 80% training
and 20% test data are prepared. For each training set
the parameter C is chosen using 3-fold cross validation
on the training set. We search over a grid of values
C = {1/27, 1/9, 1/3, 1, 3, 9, 27}.

In a standard SVM with linear kernel, the scaling of
the features changes the resulting weights w (as it is
equivalent to a change of the regularizer). Analogu-
ously, in MKL the scaling of the kernels affects their
resulting coefficients β. In [5] it is argued that a rea-
sonable order of magnitude of the SVM regularization
parameter C can be estimated as the inverse of the
variance of the points in feature space. Conversely, for
C = 1 a reasonable scaling of the kernel matrix is such
that the implied variance equals one. We apply this
scaling to all kernels in our experiments.

3.1. Computational Complexity

We investigate the scaling behaviour of the proposed
algorithm in three directions: (1) number of training
examples, (2) number of classes, and (3) number of
kernels. We generate some toy data using class cen-
ters on the edges of a standard simplex and Gaussian
noise with standard deviation 0.3. For example, for a
4-class problem, we use the vertices of a regular tetra-
hedron in 3 dimensions as the class centers. We use
the Gaussian RBF kernel with the width set to the
1/|Y| quantile of the pairwise distances of the data
points; for example it is set to the 1/3 quantile for a
3-class problem. The kernels are generated by consid-
ering {20, 2−0.5, 20.5, 2−1, 21, 2−1.5, 21.5, . . . , 210} times
the default Gaussian width.

We report results for Equation (9), Equation (11), and
the m-SVM which is Equation (9) with a single kernel,
and hence a QP. We optimize all methods to a rela-
tive duality gap of 10−2. In Table 1 time complexities
are shown that are estimated from the slopes of log-
log plots. The SILP is consistently faster and has a
better scaling behaviour on the data compared to the
QCQP. Note that the QCQP requires that all the ker-
nel matrices fit in active memory, but the SILP only
ever deals with the matrix of weighted sums.

Since the three OPs are equivalent, one might expect
that the computational time w.r.t. increasing numbers
of training examples and classes would also be the
same. However, CPLEX is restricted to the barrier
method for solving QCQPs, but allows other solvers
such as the primal and dual simplex solvers for LPs
and QPs. Other experiments on using the different
solvers for QPs, for which we omit the results, show

Examples Classes Kernels
QP, unfolded 2.5 1.8 –
QCQP, unfolded (9) 3.0 2.0 2.3
SILP, unfolded (11) 2.4 1.7 1.1
SILP, compact 2.6 2.2 1.0

Table 1: Estimated slopes of log-log plots, correspond-
ing to the order of the polynomial complexity. We
measure computing time while increasing a single pa-
rameter of the base case of 300 examples, 3 classes and
3 kernels. The range of values [min,max] on a log scale
used were [100,5000] examples, [3,100] classes, and
[2,20] kernels. The QCQP is also a constant amount
slower for any particular dataset size.

that the observed difference in computation time is in
large part due to different solvers.

The scaling behaviour of the SILP with respect to
the number of kernels depends on the number of con-
straints that need to be generated before the SILP is
converged. The number of constraints depends on the
set of kernels considered. For example, if there is only
one meaningful kernel and the rest are noise, the SILP
converges within 2 or 3 iterations since β, and hence
α, ceases to change between iterations.

3.2. Sanity Check

The aim of this section is to compare our method to
binary MKL on a published dataset. We use previ-
ously defined kernels for the detection of membrane
proteins [14]. This task consists of 2316 examples, 7
kernels and 2 classes.1 Since the optimization method
in [14] is equivalent to the method in [1], and hence
equivalent to ours, we obtain identical results (up to
numerical inaccuracies).

Figure 2 shows a detailed analysis of the performance
of each kernel by itself, the performance of an SVM
on the average of all the kernels, and the performance
of MKL. Observe that while most kernels individually
perform equally well in terms of accuracy, the MKL al-
locates very different weights (β) to them. As observed
in [14], for this particular dataset the unweighted sum
of kernels performs as well as MKL, unless “noise ker-
nels” are included.

3.3. State of the art accuracy

Here we demonstrate the utility of our method by ap-
plying it to another real world problem, which is highly

1The original dataset has 2318 examples. For two of
we could not find the corresponding sequences, and hence
discarded them. Also, we excluded one of the original 8
kernels, as it is random noise [14].
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Figure 2: Accuracy and MKL weights for the binary
classification task from [14], averaged over 10 random
splits. The x-axis indexes the 7 kernels. (Top) Bars:
test set accuracy for C = 1. Line: accuracy of MKL
and of unweighted sum of kernels, which happen to be
identical. (Bottom) Value of β as found by MKL.

relevant to cell biology: to predict the subcellular lo-
calization of proteins. We use a total of 69 kernels: 2
kernels on phylogenetic trees, 3 kernels from BLAST
E-values, and 64 sequence motif kernels. When com-
paring our predictor to current state of the art meth-
ods, we perform substantially better. Figure 3 sum-
marizes the results in [17] on three datasets.

The original plant dataset of TargetP [7] is classified
in [11] as a 4 class problem. The method TargetLoc
[11] uses three layers of SVMs, the first layer detect-
ing certain features, and the second and third layers
combining the outputs of previous SVMs. Their av-
erage performance over all classes measured in terms
of Matthew’s Correlation Coefficient (MCC) is 85.3%,
whereas our approach achieves a MCC of 89.1%. The
unweighted sum of kernels obtains 87.6%, which con-
firms the observation of the previous section: if all
kernels are useful for the classification task, an un-
weighted sum often performs well. However, here mul-
ticlass MKL performs even better.

We further compare our approach to the method
PSORTb on another two datasets of bacterial protein
locations [9]. The psort+ dataset contains 4 classes,
and PSORTb achieves an average F1 score of 90.0%,
which we outperform with an F1 score of 93.8%. On
psort-, a 5 class problem, PSORTb reaches an average
F1 score of 87.5%, whereas we achieve 96.1%! Com-
paring to the F1 scores of 85.0% and 88.0% of the
unweighted sum of kernels, we see that MKL again
performs substantially better. However, for psort+,
the probabilistic method of [9] is superior to the un-

plant psort+ psort−
80

82

84

86

88

90

92

94

96

98

100

Figure 3: Protein Subcellular Localization results.
The bars within each group correspond to different
methods: (left, blue) MKL; (center, green) unweighted
sum of kernels; (right, red) current state of the art.

weighted sum. In the ten random splits our sparsity
promoting regularizer only chooses 25 different kernels.

3.4. Learning the kernel on Y

So far we have optimized over kernels on the input data
and always multiplied it with the matching kernel on
the classes to obtain the joint kernel. Here we consider
the reverse setting: to optimize over different kernels
on Y. Figure 4 (top) shows a toy setting with three
Gaussian classes that have different pairwise relation-
ships. For the kernels on Y, we consider all positive
semidefinite matrices that are zero except for a symet-
ric 2×2 submatrix which is +1 along the diagonal and
+1/-1 on the off-diagonal. Their convex combination
allows many possible positive semidefinite matrices, al-
though it does not span the entire space of possible
output kernels. We apply MKL to the products with
the linear kernel on X . The resulting matrix KY im-
plies a Euclidean embedding of the classes, which in
this experiment nicely reflects the arrangement of the
class centers (Figure 4, bottom).

Preliminary results (not shown) indicate that in some
cases learning the kernel on the classes may yield im-
proved classification accuracy. Moreover, it seems to
offer the possibility to gain understanding about the
relationships between classes. However, exactly how
this works does not yet seems to be clear, and further
research in this direction is indicated.

4. Discussion

We extend multiclass classification to allow the use of
multiple kernels. Using the conjugate of the loss func-
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v3 F l=100
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+ 2.2 1.0 0

Figure 4: Toy experiment for learning kY .

tion, we slightly generalize the proof technique used
in [20], and hence allow for all convex loss functions.
Since many implementations of multiple kernel learn-
ing are based on SDP, SOCP, or QCQP approaches, we
compare the direct approach to the approximation us-
ing a SILP, which results in significant computational
savings. We then demonstrate that our approach is
better than the state of the art in protein subcellular
localization, an important problem in cell biology.

In contrast to a decomposition into binary classifica-
tion algorithms, the proposed algorithm utilizes a com-
mon feature space for all the different classes. The ad-
vantages of this include easier visualization and feature
extraction. Furthermore, it is possible that the num-
ber of kernels selected by our method may be lower
than when running, e.g., one-vs-rest MKL. For ex-
ample, there may be several related kernels any one
of which can be used to differentiate between all the
classes, but a different one may be selected in each
binary subproblem. An interesting open question is
whether there are significant gains in this direction.
Disadvantages of having a common feature space arise
when the user is particularly interested in which spe-
cific kernel (or even feature) identifies any class from
the rest. However, further potential of our method
may be in the possibility to learn a kernel on the
classes; this remains to be investigated.

Apart from being a valuable tool for the vast number
of real-world multiclass problems, the proposed multi-
class MKL formulation can serve as a natural starting
point for carrying MKL into the world of structured
output learning. For example, the abundant setting of
label sequence learning can be viewed as a multiclass
problem with an exponential number of classes and is
frequently solved by column generation methods. Ex-
tending our optimization problems in this way is an
exciting direction for future research.
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Appendix: Deriving the Optimization

Problem

We prove the dualization for the multiple kernel case.
Recall that n denotes the number of data points, and
there are m := |Y| classes and p kernels. The single
kernel case falls out as special case with p = 1.

Proof [of Theorem 1] We equivalently replace the con-
straints on ξi in (4) by tiu =

∑

k 〈vk,Ψkiu〉 + byi
− bu

and ξi > ` (tiu) for all i and u 6= yi. The Lagrangian
of the resulting OP is given by

L =
1

2

∑

k

1

βk

‖vk‖
2 +

∑

i

ξi + γ

(

∑

k

βk − 1

)

−
∑

k

εkβk +
∑

i

∑

u6=yi

ηiu (` (tiu) − ξi)

+
∑

i

∑

u6=yi

α̃iu

(

tiu −
∑

k

〈vk,Ψkiu〉 − byi
+ bu

)

,

with Lagrange variables 0 6 ε ∈ R
p, α̃ ∈ R

n×(m−1),
0 6 η ∈ R

n×(m−1), and γ ∈ R. From ∂L
∂vk

= 0

we prove (6), as we get 1
βk

vk =
∑

i

∑

u6=yi
α̃iuΨkiu.

We plug the results obtained from setting the partial
derivatives wrt all primal variables to zero into the
Lagrangian, thereby simplifying it considerably.

max
η,α̃,γ

min
t

∑

i

∑

u6=yi
(ηiu`(tiu) + α̃iutiu) − γ,

s.t. ∀k : γ >
1

2
‖wk‖

2, and ∀i : ∀u : 0 6 ηiu,

∀i : 1 =
∑

u6=yi

ηiu,

∀v : 0 =
∑

i

(1 − δyiv)α̃iv −
∑

i

δyiv

∑

u6=yi

α̃iu .

Finally we transform the objective to obtain (5) by
taking into accout the effect of linear equality con-
straints on conjugate functions (cf. [4, Section 5.7]).

max
η,α̃,γ

min
t

∑

i

∑

u6=yi

(ηiu`(tiu) + α̃iutiu) − γ

⇔

min
η,α̃,γ

γ +
∑

i

∑

u6=yi

ηiu`∗
(

−
α̃iu

ηiu

)

.

(13)
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Corollary 2 When choosing the hinge loss, `(t) :=
C max (0, 1 − t), the optimum w of (4) can be com-
puted as in (10), where α ∈ R

n×Y is the solution of
the QCQP (9).

Proof We apply Theorem 1 with the observation
that the conjugate function of the hinge loss `(t) :=
C max (0, 1 − t) is given by

`∗(ν) =

{

ν −C 6 ν 6 0

∞ otherwise
.

Plugging this into (5) yields

min
η,α̃,γ

γ −
∑

i

∑

u6=yi

α̃iu

s.t. ∀k : γ >
1

2





∑

i

∑

u6=yi

α̃iuΨkiu





2

,

∀i : ∀u 6= yi : 0 6 α̃iu 6 ηiuC,

∀i : ∀u 6= yi : 0 6 ηiu, and ∀i : 1 =
∑

u6=yi

ηiu,

∀v : 0 =
∑

i

(1 − δyiv)α̃iv −
∑

i

δyiv

∑

u6=yi

α̃iu

We observe that the constraints involving ηiu imply
∑

u6=yi
α̃iu 6 C, and tidy up the notation by using

the substitution (8). Plugging both into (6) and (4),
we obtain the result.

References

[1] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan.
Multiple Kernel Learning, Conic Duality, and the
SMO Algorithm. In Proceedings of the Twenty-first
International Conference on Machine Learning, 2004.

[2] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N.
Vishwanathan, A. J. Smola, and H.-P. Kriegel. Pro-
tein function prediction via graph kernels. In Pro-
ceedings of the International Conference on Intelligent
Systems for Molecular Biology, 2005.

[3] O. Bousquet and D. J. L. Herrmann. On the complex-
ity of learning the kernel matrix. In Neural Informa-
tion Processing Systems, 2003.

[4] S. P. Boyd and L. Vandenberghe. Convex Optimiza-
tion. Cambridge University Press, 2004.

[5] O. Chapelle and A. Zien. Semi-Supervised Classifi-
cation by Low Density Separation. In Proceedings of
the Tenth International Workshop on Artificial Intel-
ligence and Statistics, pages 57–64, 2005.

[6] K. Crammer, J. Keshet, and Y. Singer. Kernel design
using boosting. In Neural Information Processing Sys-
tems, 2003.

[7] O. Emanuelsson, H. Nielsen, S. Brunak, and G. von
Heijne. Predicting subcellular localization of proteins
based on their N-terminal amino acid sequence. Jour-
nal of Molecular Biology, 300:1005–1016, 2000.

[8] G. Fung, M. Dundar, J. Bi, and B. Rao. A fast itera-
tive algorithm for fisher discriminant using heteroge-
neous kernels. In Proceedings of the 21st International
Conference on Machine Learning, pages 40–47, 2004.

[9] J. L. Gardy, M. R. Laird, F. Chen, S. Rey, C. J. Walsh,
M. Ester, and F. S. L. Brinkman. PSORTb v.2.0: ex-
panded prediction of bacterial protein subcellular lo-
calization and insights gained from comparative pro-
teome analysis. Bioinfomatics, 21:617–623, 2004.

[10] R. Hettich and K. O. Kortanek. Semi-Infinite
Programming: Theory, Methods, and Applications.
SIAM Review, 35(3):380–429, September 1993.
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